ለውጦች
On ሃምሌ 4, 2022, 14:40:59 (SAST),
-
Moved Mali: High Resolution Population Density Maps + Demographic Estimates from organization HDX - The Humanitarian Data Exchange to organization Open Cities Lab
f | 1 | { | f | 1 | { |
2 | "author": "Data for Good at Meta", | 2 | "author": "Data for Good at Meta", | ||
3 | "author_email": "", | 3 | "author_email": "", | ||
4 | "creator_user_id": "77d79e63-5fb4-4320-94e4-51e5e9b8031c", | 4 | "creator_user_id": "77d79e63-5fb4-4320-94e4-51e5e9b8031c", | ||
5 | "extras": [], | 5 | "extras": [], | ||
n | 6 | "groups": [], | n | 6 | "groups": [ |
7 | { | ||||
8 | "description": "The Humanitarian Data Exchange (HDX) is an open | ||||
9 | platform for sharing data across crises and organisations. Launched in | ||||
10 | July 2014, the goal of HDX is to make humanitarian data easy to find | ||||
11 | and use for analysis. Our growing collection of datasets has been | ||||
12 | accessed by users in over 200 countries and territories.\r\n\r\nHDX is | ||||
13 | managed by OCHA's Centre for Humanitarian Data, which is located in | ||||
14 | The Hague. OCHA is part of the United Nations Secretariat and is | ||||
15 | responsible for bringing together humanitarian actors to ensure a | ||||
16 | coherent response to emergencies. The HDX team includes OCHA staff and | ||||
17 | a number of consultants who are based in North America, Europe and | ||||
18 | Africa.", | ||||
19 | "display_name": "HDX: Humanitarian Data Exchange", | ||||
20 | "id": "15791998-b8b5-41fa-841f-0393addadcbf", | ||||
21 | "image_display_url": | ||||
22 | "https://data.humdata.org/images/homepage/logo-hdx.svg", | ||||
23 | "name": "hdx-humanitarian-data-exchange", | ||||
24 | "title": "HDX: Humanitarian Data Exchange" | ||||
25 | }, | ||||
26 | { | ||||
27 | "description": "", | ||||
28 | "display_name": "Population ", | ||||
29 | "id": "ad455715-07fc-421f-aef4-780b25b9c67a", | ||||
30 | "image_display_url": "", | ||||
31 | "name": "population", | ||||
32 | "title": "Population " | ||||
33 | } | ||||
34 | ], | ||||
7 | "id": "9ff27544-b476-4781-9251-8e9ca7677353", | 35 | "id": "9ff27544-b476-4781-9251-8e9ca7677353", | ||
8 | "isopen": true, | 36 | "isopen": true, | ||
9 | "license_id": "cc-by", | 37 | "license_id": "cc-by", | ||
10 | "license_title": "Creative Commons Attribution", | 38 | "license_title": "Creative Commons Attribution", | ||
11 | "license_url": "http://www.opendefinition.org/licenses/cc-by", | 39 | "license_url": "http://www.opendefinition.org/licenses/cc-by", | ||
12 | "maintainer": "Brian O'Leary", | 40 | "maintainer": "Brian O'Leary", | ||
13 | "maintainer_email": "[email protected]", | 41 | "maintainer_email": "[email protected]", | ||
14 | "metadata_created": "2022-06-30T09:42:30.484960", | 42 | "metadata_created": "2022-06-30T09:42:30.484960", | ||
n | 15 | "metadata_modified": "2022-06-30T09:43:48.177919", | n | 43 | "metadata_modified": "2022-07-04T12:40:59.604915", |
16 | "name": | 44 | "name": | ||
17 | "mali-high-resolution-population-density-maps-demographic-estimates", | 45 | "mali-high-resolution-population-density-maps-demographic-estimates", | ||
18 | "notes": "The world's most accurate population datasets. Seven | 46 | "notes": "The world's most accurate population datasets. Seven | ||
19 | maps/datasets for the distribution of various populations in Mali: (1) | 47 | maps/datasets for the distribution of various populations in Mali: (1) | ||
20 | Overall population density (2) Women (3) Men (4) Children (ages 0-5) | 48 | Overall population density (2) Women (3) Men (4) Children (ages 0-5) | ||
21 | (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of | 49 | (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of | ||
22 | reproductive age (ages 15-49).\r\n\r\n### Methodology\r\n\r\nThese | 50 | reproductive age (ages 15-49).\r\n\r\n### Methodology\r\n\r\nThese | ||
23 | high-resolution maps are created using machine learning techniques to | 51 | high-resolution maps are created using machine learning techniques to | ||
24 | identify buildings from commercially available satellite images. This | 52 | identify buildings from commercially available satellite images. This | ||
25 | is then overlayed with general population estimates based on publicly | 53 | is then overlayed with general population estimates based on publicly | ||
26 | available census data and other population statistics at Columbia | 54 | available census data and other population statistics at Columbia | ||
27 | University. The resulting maps are the most detailed and actionable | 55 | University. The resulting maps are the most detailed and actionable | ||
28 | tools available for aid and research organizations. For more | 56 | tools available for aid and research organizations. For more | ||
29 | information about the methodology used to create our high resolution | 57 | information about the methodology used to create our high resolution | ||
30 | population density maps and the demographic distributions, click | 58 | population density maps and the demographic distributions, click | ||
31 | resolution-population-density-maps-demographic-estimates/).\r\n\r\nFor | 59 | resolution-population-density-maps-demographic-estimates/).\r\n\r\nFor | ||
32 | information about how to use HDX to access these datasets, please | 60 | information about how to use HDX to access these datasets, please | ||
33 | visit: | 61 | visit: | ||
34 | n-density-maps-demographic-estimates-documentation/\r\n\r\nAdjustments | 62 | n-density-maps-demographic-estimates-documentation/\r\n\r\nAdjustments | ||
35 | to match the census population with the UN estimates are applied at | 63 | to match the census population with the UN estimates are applied at | ||
36 | the national level. The UN estimate for a given country (or | 64 | the national level. The UN estimate for a given country (or | ||
37 | state/territory) is divided by the total census estimate of population | 65 | state/territory) is divided by the total census estimate of population | ||
38 | for the given country. The resulting adjustment factor is multiplied | 66 | for the given country. The resulting adjustment factor is multiplied | ||
39 | by each administrative unit census value for the target year. This | 67 | by each administrative unit census value for the target year. This | ||
40 | preserves the relative population totals across administrative units | 68 | preserves the relative population totals across administrative units | ||
41 | while matching the UN total. More information can be found | 69 | while matching the UN total. More information can be found | ||
42 | ocs/census-information-for-high-resolution-population-density-maps/)", | 70 | ocs/census-information-for-high-resolution-population-density-maps/)", | ||
43 | "num_resources": 1, | 71 | "num_resources": 1, | ||
44 | "num_tags": 7, | 72 | "num_tags": 7, | ||
45 | "organization": { | 73 | "organization": { | ||
46 | "approval_status": "approved", | 74 | "approval_status": "approved", | ||
n | 47 | "created": "2022-06-15T09:44:22.871262", | n | 75 | "created": "2022-07-04T08:06:45.420882", |
48 | "description": "The Humanitarian Data Exchange (HDX) is an open | 76 | "description": "We work to build inclusion and participatory | ||
49 | platform for sharing data across crises and organisations. Launched in | 77 | democracy in cities and urban spaces through empowering citizens, | ||
50 | July 2014, the goal of HDX is to make humanitarian data easy to find | 78 | building trust and accountability in civic space, and capacitating | ||
51 | and use for analysis. Our growing collection of datasets has been | 79 | government. You can find our website | ||
52 | accessed by users in over 200 countries and territories.\r\n\r\nHDX is | 80 | [here](https://opencitieslab.org/).", | ||
53 | managed by OCHA's Centre for Humanitarian Data, which is located in | 81 | "id": "8e526815-d516-4f6c-9ae0-a4d62555c30c", | ||
54 | The Hague. OCHA is part of the United Nations Secretariat and is | ||||
55 | responsible for bringing together humanitarian actors to ensure a | ||||
56 | coherent response to emergencies. The HDX team includes OCHA staff and | ||||
57 | a number of consultants who are based in North America, Europe and | ||||
58 | Africa.", | ||||
59 | "id": "ad11db0c-27d3-433d-bc99-973c2ffae709", | ||||
60 | "image_url": | 82 | "image_url": | ||
n | 61 | "https://data.humdata.org/images/homepage/logo-hdx.svg", | n | 83 | ttps://opencitieslab.org/odd/static/dist/img/ocl_logo_header-nav.png", |
62 | "is_organization": true, | 84 | "is_organization": true, | ||
n | 63 | "name": "hdx-the-humanitarian-data-exchange", | n | 85 | "name": "open-cities-lab", |
64 | "revision_id": "e6c349dd-82c3-4176-a1c7-a4d89d8eae93", | 86 | "revision_id": "35e0d462-e6b8-4c18-8743-e9361e136009", | ||
65 | "state": "active", | 87 | "state": "active", | ||
n | 66 | "title": "HDX - The Humanitarian Data Exchange", | n | 88 | "title": "Open Cities Lab", |
67 | "type": "organization" | 89 | "type": "organization" | ||
68 | }, | 90 | }, | ||
n | 69 | "owner_org": "ad11db0c-27d3-433d-bc99-973c2ffae709", | n | 91 | "owner_org": "8e526815-d516-4f6c-9ae0-a4d62555c30c", |
70 | "private": false, | 92 | "private": false, | ||
71 | "relationships_as_object": [], | 93 | "relationships_as_object": [], | ||
72 | "relationships_as_subject": [], | 94 | "relationships_as_subject": [], | ||
73 | "resources": [ | 95 | "resources": [ | ||
74 | { | 96 | { | ||
75 | "cache_last_updated": null, | 97 | "cache_last_updated": null, | ||
76 | "cache_url": null, | 98 | "cache_url": null, | ||
77 | "created": "2022-06-30T09:43:47.985993", | 99 | "created": "2022-06-30T09:43:47.985993", | ||
78 | "datastore_active": false, | 100 | "datastore_active": false, | ||
79 | "description": "The world's most accurate population datasets. | 101 | "description": "The world's most accurate population datasets. | ||
80 | Seven maps/datasets for the distribution of various populations in | 102 | Seven maps/datasets for the distribution of various populations in | ||
81 | Mali: (1) Overall population density (2) Women (3) Men (4) Children | 103 | Mali: (1) Overall population density (2) Women (3) Men (4) Children | ||
82 | (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of | 104 | (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of | ||
83 | reproductive age (ages 15-49).", | 105 | reproductive age (ages 15-49).", | ||
84 | "format": "", | 106 | "format": "", | ||
85 | "hash": "", | 107 | "hash": "", | ||
86 | "id": "5bc35519-deab-4bc7-bc25-6ae507b56458", | 108 | "id": "5bc35519-deab-4bc7-bc25-6ae507b56458", | ||
87 | "last_modified": null, | 109 | "last_modified": null, | ||
88 | "mimetype": null, | 110 | "mimetype": null, | ||
89 | "mimetype_inner": null, | 111 | "mimetype_inner": null, | ||
90 | "name": "Mali: High Resolution Population Density Maps + | 112 | "name": "Mali: High Resolution Population Density Maps + | ||
91 | Demographic Estimates", | 113 | Demographic Estimates", | ||
92 | "package_id": "9ff27544-b476-4781-9251-8e9ca7677353", | 114 | "package_id": "9ff27544-b476-4781-9251-8e9ca7677353", | ||
93 | "position": 0, | 115 | "position": 0, | ||
94 | "resource_type": null, | 116 | "resource_type": null, | ||
95 | "revision_id": "0fd7b881-79a5-4318-ac96-dfbb55d330f9", | 117 | "revision_id": "0fd7b881-79a5-4318-ac96-dfbb55d330f9", | ||
96 | "size": null, | 118 | "size": null, | ||
97 | "state": "active", | 119 | "state": "active", | ||
98 | "url": | 120 | "url": | ||
99 | s://data.humdata.org/dataset/highresolutionpopulationdensitymaps-mli", | 121 | s://data.humdata.org/dataset/highresolutionpopulationdensitymaps-mli", | ||
100 | "url_type": null | 122 | "url_type": null | ||
101 | } | 123 | } | ||
102 | ], | 124 | ], | ||
t | 103 | "revision_id": "0fd7b881-79a5-4318-ac96-dfbb55d330f9", | t | 125 | "revision_id": "5f61fd04-8715-49dc-bd4e-5ada5b293ff2", |
104 | "state": "active", | 126 | "state": "active", | ||
105 | "tags": [ | 127 | "tags": [ | ||
106 | { | 128 | { | ||
107 | "display_name": "Mali", | 129 | "display_name": "Mali", | ||
108 | "id": "65d5de3b-c4b2-498a-84f1-0c7022af130e", | 130 | "id": "65d5de3b-c4b2-498a-84f1-0c7022af130e", | ||
109 | "name": "Mali", | 131 | "name": "Mali", | ||
110 | "state": "active", | 132 | "state": "active", | ||
111 | "vocabulary_id": null | 133 | "vocabulary_id": null | ||
112 | }, | 134 | }, | ||
113 | { | 135 | { | ||
114 | "display_name": "children", | 136 | "display_name": "children", | ||
115 | "id": "a31aa94e-cdbe-470b-b953-602bfc01eeab", | 137 | "id": "a31aa94e-cdbe-470b-b953-602bfc01eeab", | ||
116 | "name": "children", | 138 | "name": "children", | ||
117 | "state": "active", | 139 | "state": "active", | ||
118 | "vocabulary_id": null | 140 | "vocabulary_id": null | ||
119 | }, | 141 | }, | ||
120 | { | 142 | { | ||
121 | "display_name": "elderly", | 143 | "display_name": "elderly", | ||
122 | "id": "9c11b077-a76b-4a95-b6ee-afb6c112f48c", | 144 | "id": "9c11b077-a76b-4a95-b6ee-afb6c112f48c", | ||
123 | "name": "elderly", | 145 | "name": "elderly", | ||
124 | "state": "active", | 146 | "state": "active", | ||
125 | "vocabulary_id": null | 147 | "vocabulary_id": null | ||
126 | }, | 148 | }, | ||
127 | { | 149 | { | ||
128 | "display_name": "men", | 150 | "display_name": "men", | ||
129 | "id": "887bf1dd-dcf9-42ab-9e75-7ee55de689a2", | 151 | "id": "887bf1dd-dcf9-42ab-9e75-7ee55de689a2", | ||
130 | "name": "men", | 152 | "name": "men", | ||
131 | "state": "active", | 153 | "state": "active", | ||
132 | "vocabulary_id": null | 154 | "vocabulary_id": null | ||
133 | }, | 155 | }, | ||
134 | { | 156 | { | ||
135 | "display_name": "population density", | 157 | "display_name": "population density", | ||
136 | "id": "98311ff5-1cea-4f34-92fb-c0757c6ce5ca", | 158 | "id": "98311ff5-1cea-4f34-92fb-c0757c6ce5ca", | ||
137 | "name": "population density", | 159 | "name": "population density", | ||
138 | "state": "active", | 160 | "state": "active", | ||
139 | "vocabulary_id": null | 161 | "vocabulary_id": null | ||
140 | }, | 162 | }, | ||
141 | { | 163 | { | ||
142 | "display_name": "women", | 164 | "display_name": "women", | ||
143 | "id": "d8f22a99-abe8-41cb-ae9c-4b543eee7cdf", | 165 | "id": "d8f22a99-abe8-41cb-ae9c-4b543eee7cdf", | ||
144 | "name": "women", | 166 | "name": "women", | ||
145 | "state": "active", | 167 | "state": "active", | ||
146 | "vocabulary_id": null | 168 | "vocabulary_id": null | ||
147 | }, | 169 | }, | ||
148 | { | 170 | { | ||
149 | "display_name": "youth", | 171 | "display_name": "youth", | ||
150 | "id": "98ff881a-a277-4d3a-9641-7657ad12e6a7", | 172 | "id": "98ff881a-a277-4d3a-9641-7657ad12e6a7", | ||
151 | "name": "youth", | 173 | "name": "youth", | ||
152 | "state": "active", | 174 | "state": "active", | ||
153 | "vocabulary_id": null | 175 | "vocabulary_id": null | ||
154 | } | 176 | } | ||
155 | ], | 177 | ], | ||
156 | "title": "Mali: High Resolution Population Density Maps + | 178 | "title": "Mali: High Resolution Population Density Maps + | ||
157 | Demographic Estimates", | 179 | Demographic Estimates", | ||
158 | "type": "dataset", | 180 | "type": "dataset", | ||
159 | "url": | 181 | "url": | ||
160 | s://data.humdata.org/dataset/highresolutionpopulationdensitymaps-mli", | 182 | s://data.humdata.org/dataset/highresolutionpopulationdensitymaps-mli", | ||
161 | "version": "" | 183 | "version": "" | ||
162 | } | 184 | } |