Changes
On June 14, 2023, 11:45:29 (SAST),
-
Deleted resource moz_youth_15_24_csv.zip from Mozambique: High Resolution Population Density Maps + Demographic Estimates
f | 1 | { | f | 1 | { |
2 | "author": "Data for Good at Meta", | 2 | "author": "Data for Good at Meta", | ||
3 | "author_email": "", | 3 | "author_email": "", | ||
4 | "creator_user_id": "34f7a594-935e-4ac6-b13c-8bb3b861b487", | 4 | "creator_user_id": "34f7a594-935e-4ac6-b13c-8bb3b861b487", | ||
5 | "extras": [], | 5 | "extras": [], | ||
6 | "groups": [ | 6 | "groups": [ | ||
7 | { | 7 | { | ||
8 | "description": "The Humanitarian Data Exchange (HDX) is an open | 8 | "description": "The Humanitarian Data Exchange (HDX) is an open | ||
9 | platform for sharing data across crises and organisations. Launched in | 9 | platform for sharing data across crises and organisations. Launched in | ||
10 | July 2014, the goal of HDX is to make humanitarian data easy to find | 10 | July 2014, the goal of HDX is to make humanitarian data easy to find | ||
11 | and use for analysis. Our growing collection of datasets has been | 11 | and use for analysis. Our growing collection of datasets has been | ||
12 | accessed by users in over 200 countries and territories.\r\n\r\nHDX is | 12 | accessed by users in over 200 countries and territories.\r\n\r\nHDX is | ||
13 | managed by OCHA's Centre for Humanitarian Data, which is located in | 13 | managed by OCHA's Centre for Humanitarian Data, which is located in | ||
14 | The Hague. OCHA is part of the United Nations Secretariat and is | 14 | The Hague. OCHA is part of the United Nations Secretariat and is | ||
15 | responsible for bringing together humanitarian actors to ensure a | 15 | responsible for bringing together humanitarian actors to ensure a | ||
16 | coherent response to emergencies. The HDX team includes OCHA staff and | 16 | coherent response to emergencies. The HDX team includes OCHA staff and | ||
17 | a number of consultants who are based in North America, Europe and | 17 | a number of consultants who are based in North America, Europe and | ||
18 | Africa.", | 18 | Africa.", | ||
19 | "display_name": "HDX: Humanitarian Data Exchange", | 19 | "display_name": "HDX: Humanitarian Data Exchange", | ||
20 | "id": "15791998-b8b5-41fa-841f-0393addadcbf", | 20 | "id": "15791998-b8b5-41fa-841f-0393addadcbf", | ||
21 | "image_display_url": | 21 | "image_display_url": | ||
22 | "https://data.humdata.org/images/homepage/logo-hdx.svg", | 22 | "https://data.humdata.org/images/homepage/logo-hdx.svg", | ||
23 | "name": "hdx-humanitarian-data-exchange", | 23 | "name": "hdx-humanitarian-data-exchange", | ||
24 | "title": "HDX: Humanitarian Data Exchange" | 24 | "title": "HDX: Humanitarian Data Exchange" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "description": "", | 27 | "description": "", | ||
28 | "display_name": "Population ", | 28 | "display_name": "Population ", | ||
29 | "id": "ad455715-07fc-421f-aef4-780b25b9c67a", | 29 | "id": "ad455715-07fc-421f-aef4-780b25b9c67a", | ||
30 | "image_display_url": "", | 30 | "image_display_url": "", | ||
31 | "name": "population", | 31 | "name": "population", | ||
32 | "title": "Population " | 32 | "title": "Population " | ||
33 | } | 33 | } | ||
34 | ], | 34 | ], | ||
35 | "id": "1349dec1-d0e1-42ae-bf10-e4dcad29b580", | 35 | "id": "1349dec1-d0e1-42ae-bf10-e4dcad29b580", | ||
36 | "isopen": true, | 36 | "isopen": true, | ||
37 | "license_id": "cc-by", | 37 | "license_id": "cc-by", | ||
38 | "license_title": "Creative Commons Attribution", | 38 | "license_title": "Creative Commons Attribution", | ||
39 | "license_url": "http://www.opendefinition.org/licenses/cc-by", | 39 | "license_url": "http://www.opendefinition.org/licenses/cc-by", | ||
40 | "maintainer": "Heiko Heilgendorff (OCL)", | 40 | "maintainer": "Heiko Heilgendorff (OCL)", | ||
41 | "maintainer_email": "[email protected]", | 41 | "maintainer_email": "[email protected]", | ||
42 | "metadata_created": "2021-06-09T14:17:22.082441", | 42 | "metadata_created": "2021-06-09T14:17:22.082441", | ||
n | 43 | "metadata_modified": "2023-06-14T09:45:15.420180", | n | 43 | "metadata_modified": "2023-06-14T09:45:29.150213", |
44 | "name": | 44 | "name": | ||
45 | mbique-high-resolution-population-density-maps-demographic-estimates", | 45 | mbique-high-resolution-population-density-maps-demographic-estimates", | ||
46 | "notes": "VERSION 1.5. The world's most accurate population | 46 | "notes": "VERSION 1.5. The world's most accurate population | ||
47 | datasets. Seven maps/datasets for the distribution of various | 47 | datasets. Seven maps/datasets for the distribution of various | ||
48 | populations in Mozambique: (1) Overall population density (2) Women | 48 | populations in Mozambique: (1) Overall population density (2) Women | ||
49 | (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly | 49 | (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly | ||
50 | (ages 60+) (7) Women of reproductive age (ages 15-49).\r\n\r\n### | 50 | (ages 60+) (7) Women of reproductive age (ages 15-49).\r\n\r\n### | ||
51 | Methodology\r\n\r\nThese high-resolution maps are created using | 51 | Methodology\r\n\r\nThese high-resolution maps are created using | ||
52 | machine learning techniques to identify buildings from commercially | 52 | machine learning techniques to identify buildings from commercially | ||
53 | available satellite images. This is then overlayed with general | 53 | available satellite images. This is then overlayed with general | ||
54 | population estimates based on publicly available census data and other | 54 | population estimates based on publicly available census data and other | ||
55 | population statistics at Columbia University. The resulting maps are | 55 | population statistics at Columbia University. The resulting maps are | ||
56 | the most detailed and actionable tools available for aid and research | 56 | the most detailed and actionable tools available for aid and research | ||
57 | organizations. For more information about the methodology used to | 57 | organizations. For more information about the methodology used to | ||
58 | create our high resolution population density maps and the demographic | 58 | create our high resolution population density maps and the demographic | ||
59 | distributions, click | 59 | distributions, click | ||
60 | resolution-population-density-maps-demographic-estimates/).\r\n\r\nFor | 60 | resolution-population-density-maps-demographic-estimates/).\r\n\r\nFor | ||
61 | information about how to use HDX to access these datasets, please | 61 | information about how to use HDX to access these datasets, please | ||
62 | visit: | 62 | visit: | ||
63 | n-density-maps-demographic-estimates-documentation/\r\n\r\nAdjustments | 63 | n-density-maps-demographic-estimates-documentation/\r\n\r\nAdjustments | ||
64 | to match the census population with the UN estimates are applied at | 64 | to match the census population with the UN estimates are applied at | ||
65 | the national level. The UN estimate for a given country (or | 65 | the national level. The UN estimate for a given country (or | ||
66 | state/territory) is divided by the total census estimate of population | 66 | state/territory) is divided by the total census estimate of population | ||
67 | for the given country. The resulting adjustment factor is multiplied | 67 | for the given country. The resulting adjustment factor is multiplied | ||
68 | by each administrative unit census value for the target year. This | 68 | by each administrative unit census value for the target year. This | ||
69 | preserves the relative population totals across administrative units | 69 | preserves the relative population totals across administrative units | ||
70 | while matching the UN total. More information can be found | 70 | while matching the UN total. More information can be found | ||
71 | ocs/census-information-for-high-resolution-population-density-maps/)", | 71 | ocs/census-information-for-high-resolution-population-density-maps/)", | ||
n | 72 | "num_resources": 2, | n | 72 | "num_resources": 1, |
73 | "num_tags": 8, | 73 | "num_tags": 8, | ||
74 | "organization": { | 74 | "organization": { | ||
75 | "approval_status": "approved", | 75 | "approval_status": "approved", | ||
76 | "created": "2022-07-04T08:06:45.420882", | 76 | "created": "2022-07-04T08:06:45.420882", | ||
77 | "description": "We work to build inclusion and participatory | 77 | "description": "We work to build inclusion and participatory | ||
78 | democracy in cities and urban spaces through empowering citizens, | 78 | democracy in cities and urban spaces through empowering citizens, | ||
79 | building trust and accountability in civic space, and capacitating | 79 | building trust and accountability in civic space, and capacitating | ||
80 | government. You can find our website | 80 | government. You can find our website | ||
81 | [here](https://opencitieslab.org/).", | 81 | [here](https://opencitieslab.org/).", | ||
82 | "id": "8e526815-d516-4f6c-9ae0-a4d62555c30c", | 82 | "id": "8e526815-d516-4f6c-9ae0-a4d62555c30c", | ||
83 | "image_url": | 83 | "image_url": | ||
84 | ttps://opencitieslab.org/odd/static/dist/img/ocl_logo_header-nav.png", | 84 | ttps://opencitieslab.org/odd/static/dist/img/ocl_logo_header-nav.png", | ||
85 | "is_organization": true, | 85 | "is_organization": true, | ||
86 | "name": "open-cities-lab", | 86 | "name": "open-cities-lab", | ||
87 | "revision_id": "35e0d462-e6b8-4c18-8743-e9361e136009", | 87 | "revision_id": "35e0d462-e6b8-4c18-8743-e9361e136009", | ||
88 | "state": "active", | 88 | "state": "active", | ||
89 | "title": "Open Cities Lab", | 89 | "title": "Open Cities Lab", | ||
90 | "type": "organization" | 90 | "type": "organization" | ||
91 | }, | 91 | }, | ||
92 | "owner_org": "8e526815-d516-4f6c-9ae0-a4d62555c30c", | 92 | "owner_org": "8e526815-d516-4f6c-9ae0-a4d62555c30c", | ||
93 | "private": false, | 93 | "private": false, | ||
94 | "relationships_as_object": [], | 94 | "relationships_as_object": [], | ||
95 | "relationships_as_subject": [], | 95 | "relationships_as_subject": [], | ||
96 | "resources": [ | 96 | "resources": [ | ||
97 | { | 97 | { | ||
98 | "cache_last_updated": null, | 98 | "cache_last_updated": null, | ||
99 | "cache_url": null, | 99 | "cache_url": null, | ||
n | 100 | "created": "2021-06-09T14:22:23.270862", | n | ||
101 | "datastore_active": false, | ||||
102 | "description": "", | ||||
103 | "format": "CSV", | ||||
104 | "hash": "", | ||||
105 | "id": "4794d234-3d95-4147-8327-6a4059d04bb9", | ||||
106 | "last_modified": null, | ||||
107 | "mimetype": null, | ||||
108 | "mimetype_inner": null, | ||||
109 | "name": "moz_youth_15_24_csv.zip", | ||||
110 | "package_id": "1349dec1-d0e1-42ae-bf10-e4dcad29b580", | ||||
111 | "position": 0, | ||||
112 | "resource_type": null, | ||||
113 | "revision_id": "a4c0c115-a7b0-4190-bbd1-370acf4f3bab", | ||||
114 | "size": null, | ||||
115 | "state": "active", | ||||
116 | "url": | ||||
117 | 54462ec-34db-413d-b89c-d103b742c7d4/download/moz_youth_15_24_csv.zip", | ||||
118 | "url_type": null | ||||
119 | }, | ||||
120 | { | ||||
121 | "cache_last_updated": null, | ||||
122 | "cache_url": null, | ||||
123 | "created": "2022-06-15T17:29:21.302423", | 100 | "created": "2022-06-15T17:29:21.302423", | ||
124 | "datastore_active": false, | 101 | "datastore_active": false, | ||
125 | "description": "VERSION 1.5. The world's most accurate | 102 | "description": "VERSION 1.5. The world's most accurate | ||
126 | population datasets. Seven maps/datasets for the distribution of | 103 | population datasets. Seven maps/datasets for the distribution of | ||
127 | various populations in Mozambique: (1) Overall population density (2) | 104 | various populations in Mozambique: (1) Overall population density (2) | ||
128 | Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) | 105 | Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) | ||
129 | Elderly (ages 60+) (7) Women of reproductive age (ages 15-49).", | 106 | Elderly (ages 60+) (7) Women of reproductive age (ages 15-49).", | ||
130 | "format": "", | 107 | "format": "", | ||
131 | "hash": "", | 108 | "hash": "", | ||
132 | "id": "07d953a3-2778-4639-9d82-f41a779fa201", | 109 | "id": "07d953a3-2778-4639-9d82-f41a779fa201", | ||
133 | "last_modified": null, | 110 | "last_modified": null, | ||
134 | "mimetype": null, | 111 | "mimetype": null, | ||
135 | "mimetype_inner": null, | 112 | "mimetype_inner": null, | ||
136 | "name": "high resolution population densitymaps", | 113 | "name": "high resolution population densitymaps", | ||
137 | "package_id": "1349dec1-d0e1-42ae-bf10-e4dcad29b580", | 114 | "package_id": "1349dec1-d0e1-42ae-bf10-e4dcad29b580", | ||
n | 138 | "position": 1, | n | 115 | "position": 0, |
139 | "resource_type": null, | 116 | "resource_type": null, | ||
t | 140 | "revision_id": "a4c0c115-a7b0-4190-bbd1-370acf4f3bab", | t | 117 | "revision_id": "571d4216-cda7-4b1d-8f64-dc90c87ef56e", |
141 | "size": null, | 118 | "size": null, | ||
142 | "state": "active", | 119 | "state": "active", | ||
143 | "url": | 120 | "url": | ||
144 | s://data.humdata.org/dataset/highresolutionpopulationdensitymaps-moz", | 121 | s://data.humdata.org/dataset/highresolutionpopulationdensitymaps-moz", | ||
145 | "url_type": null | 122 | "url_type": null | ||
146 | } | 123 | } | ||
147 | ], | 124 | ], | ||
148 | "revision_id": "d1bc9b06-31d7-4d24-8177-666d7cdd5572", | 125 | "revision_id": "d1bc9b06-31d7-4d24-8177-666d7cdd5572", | ||
149 | "state": "active", | 126 | "state": "active", | ||
150 | "tags": [ | 127 | "tags": [ | ||
151 | { | 128 | { | ||
152 | "display_name": "children", | 129 | "display_name": "children", | ||
153 | "id": "a31aa94e-cdbe-470b-b953-602bfc01eeab", | 130 | "id": "a31aa94e-cdbe-470b-b953-602bfc01eeab", | ||
154 | "name": "children", | 131 | "name": "children", | ||
155 | "state": "active", | 132 | "state": "active", | ||
156 | "vocabulary_id": null | 133 | "vocabulary_id": null | ||
157 | }, | 134 | }, | ||
158 | { | 135 | { | ||
159 | "display_name": "elderly", | 136 | "display_name": "elderly", | ||
160 | "id": "9c11b077-a76b-4a95-b6ee-afb6c112f48c", | 137 | "id": "9c11b077-a76b-4a95-b6ee-afb6c112f48c", | ||
161 | "name": "elderly", | 138 | "name": "elderly", | ||
162 | "state": "active", | 139 | "state": "active", | ||
163 | "vocabulary_id": null | 140 | "vocabulary_id": null | ||
164 | }, | 141 | }, | ||
165 | { | 142 | { | ||
166 | "display_name": "geodata", | 143 | "display_name": "geodata", | ||
167 | "id": "7801f2cc-853c-4190-b21a-641a82b8d1f1", | 144 | "id": "7801f2cc-853c-4190-b21a-641a82b8d1f1", | ||
168 | "name": "geodata", | 145 | "name": "geodata", | ||
169 | "state": "active", | 146 | "state": "active", | ||
170 | "vocabulary_id": null | 147 | "vocabulary_id": null | ||
171 | }, | 148 | }, | ||
172 | { | 149 | { | ||
173 | "display_name": "men", | 150 | "display_name": "men", | ||
174 | "id": "887bf1dd-dcf9-42ab-9e75-7ee55de689a2", | 151 | "id": "887bf1dd-dcf9-42ab-9e75-7ee55de689a2", | ||
175 | "name": "men", | 152 | "name": "men", | ||
176 | "state": "active", | 153 | "state": "active", | ||
177 | "vocabulary_id": null | 154 | "vocabulary_id": null | ||
178 | }, | 155 | }, | ||
179 | { | 156 | { | ||
180 | "display_name": "population density", | 157 | "display_name": "population density", | ||
181 | "id": "98311ff5-1cea-4f34-92fb-c0757c6ce5ca", | 158 | "id": "98311ff5-1cea-4f34-92fb-c0757c6ce5ca", | ||
182 | "name": "population density", | 159 | "name": "population density", | ||
183 | "state": "active", | 160 | "state": "active", | ||
184 | "vocabulary_id": null | 161 | "vocabulary_id": null | ||
185 | }, | 162 | }, | ||
186 | { | 163 | { | ||
187 | "display_name": "reproductive", | 164 | "display_name": "reproductive", | ||
188 | "id": "6fb38736-99e6-40c9-b3b3-da34da5e6cf5", | 165 | "id": "6fb38736-99e6-40c9-b3b3-da34da5e6cf5", | ||
189 | "name": "reproductive", | 166 | "name": "reproductive", | ||
190 | "state": "active", | 167 | "state": "active", | ||
191 | "vocabulary_id": null | 168 | "vocabulary_id": null | ||
192 | }, | 169 | }, | ||
193 | { | 170 | { | ||
194 | "display_name": "women", | 171 | "display_name": "women", | ||
195 | "id": "d8f22a99-abe8-41cb-ae9c-4b543eee7cdf", | 172 | "id": "d8f22a99-abe8-41cb-ae9c-4b543eee7cdf", | ||
196 | "name": "women", | 173 | "name": "women", | ||
197 | "state": "active", | 174 | "state": "active", | ||
198 | "vocabulary_id": null | 175 | "vocabulary_id": null | ||
199 | }, | 176 | }, | ||
200 | { | 177 | { | ||
201 | "display_name": "youth", | 178 | "display_name": "youth", | ||
202 | "id": "98ff881a-a277-4d3a-9641-7657ad12e6a7", | 179 | "id": "98ff881a-a277-4d3a-9641-7657ad12e6a7", | ||
203 | "name": "youth", | 180 | "name": "youth", | ||
204 | "state": "active", | 181 | "state": "active", | ||
205 | "vocabulary_id": null | 182 | "vocabulary_id": null | ||
206 | } | 183 | } | ||
207 | ], | 184 | ], | ||
208 | "title": "Mozambique: High Resolution Population Density Maps + | 185 | "title": "Mozambique: High Resolution Population Density Maps + | ||
209 | Demographic Estimates", | 186 | Demographic Estimates", | ||
210 | "type": "dataset", | 187 | "type": "dataset", | ||
211 | "url": | 188 | "url": | ||
212 | s://data.humdata.org/dataset/highresolutionpopulationdensitymaps-moz", | 189 | s://data.humdata.org/dataset/highresolutionpopulationdensitymaps-moz", | ||
213 | "version": "" | 190 | "version": "" | ||
214 | } | 191 | } |