Modifications
On Juin 14, 2023, 11:37:15 (SAST),
-
Deleted resource nga_men_2020_geotiff.zip from Nigeria: High Resolution Population Density Maps + Demographic Estimates
f | 1 | { | f | 1 | { |
2 | "author": "Data for Good at Meta", | 2 | "author": "Data for Good at Meta", | ||
3 | "author_email": "", | 3 | "author_email": "", | ||
4 | "creator_user_id": "34f7a594-935e-4ac6-b13c-8bb3b861b487", | 4 | "creator_user_id": "34f7a594-935e-4ac6-b13c-8bb3b861b487", | ||
5 | "extras": [], | 5 | "extras": [], | ||
6 | "groups": [ | 6 | "groups": [ | ||
7 | { | 7 | { | ||
8 | "description": "The Humanitarian Data Exchange (HDX) is an open | 8 | "description": "The Humanitarian Data Exchange (HDX) is an open | ||
9 | platform for sharing data across crises and organisations. Launched in | 9 | platform for sharing data across crises and organisations. Launched in | ||
10 | July 2014, the goal of HDX is to make humanitarian data easy to find | 10 | July 2014, the goal of HDX is to make humanitarian data easy to find | ||
11 | and use for analysis. Our growing collection of datasets has been | 11 | and use for analysis. Our growing collection of datasets has been | ||
12 | accessed by users in over 200 countries and territories.\r\n\r\nHDX is | 12 | accessed by users in over 200 countries and territories.\r\n\r\nHDX is | ||
13 | managed by OCHA's Centre for Humanitarian Data, which is located in | 13 | managed by OCHA's Centre for Humanitarian Data, which is located in | ||
14 | The Hague. OCHA is part of the United Nations Secretariat and is | 14 | The Hague. OCHA is part of the United Nations Secretariat and is | ||
15 | responsible for bringing together humanitarian actors to ensure a | 15 | responsible for bringing together humanitarian actors to ensure a | ||
16 | coherent response to emergencies. The HDX team includes OCHA staff and | 16 | coherent response to emergencies. The HDX team includes OCHA staff and | ||
17 | a number of consultants who are based in North America, Europe and | 17 | a number of consultants who are based in North America, Europe and | ||
18 | Africa.", | 18 | Africa.", | ||
19 | "display_name": "HDX: Humanitarian Data Exchange", | 19 | "display_name": "HDX: Humanitarian Data Exchange", | ||
20 | "id": "15791998-b8b5-41fa-841f-0393addadcbf", | 20 | "id": "15791998-b8b5-41fa-841f-0393addadcbf", | ||
21 | "image_display_url": | 21 | "image_display_url": | ||
22 | "https://data.humdata.org/images/homepage/logo-hdx.svg", | 22 | "https://data.humdata.org/images/homepage/logo-hdx.svg", | ||
23 | "name": "hdx-humanitarian-data-exchange", | 23 | "name": "hdx-humanitarian-data-exchange", | ||
24 | "title": "HDX: Humanitarian Data Exchange" | 24 | "title": "HDX: Humanitarian Data Exchange" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "description": "", | 27 | "description": "", | ||
28 | "display_name": "Population ", | 28 | "display_name": "Population ", | ||
29 | "id": "ad455715-07fc-421f-aef4-780b25b9c67a", | 29 | "id": "ad455715-07fc-421f-aef4-780b25b9c67a", | ||
30 | "image_display_url": "", | 30 | "image_display_url": "", | ||
31 | "name": "population", | 31 | "name": "population", | ||
32 | "title": "Population " | 32 | "title": "Population " | ||
33 | } | 33 | } | ||
34 | ], | 34 | ], | ||
35 | "id": "fe17bb29-52c2-4029-af8e-58e4f362f956", | 35 | "id": "fe17bb29-52c2-4029-af8e-58e4f362f956", | ||
36 | "isopen": true, | 36 | "isopen": true, | ||
37 | "license_id": "cc-by", | 37 | "license_id": "cc-by", | ||
38 | "license_title": "Creative Commons Attribution", | 38 | "license_title": "Creative Commons Attribution", | ||
39 | "license_url": "http://www.opendefinition.org/licenses/cc-by", | 39 | "license_url": "http://www.opendefinition.org/licenses/cc-by", | ||
40 | "maintainer": "Heiko Heilgendorff (OCL)", | 40 | "maintainer": "Heiko Heilgendorff (OCL)", | ||
41 | "maintainer_email": "[email protected]", | 41 | "maintainer_email": "[email protected]", | ||
42 | "metadata_created": "2021-06-03T14:01:21.364366", | 42 | "metadata_created": "2021-06-03T14:01:21.364366", | ||
n | 43 | "metadata_modified": "2023-06-14T09:37:01.553153", | n | 43 | "metadata_modified": "2023-06-14T09:37:15.320642", |
44 | "name": | 44 | "name": | ||
45 | igeria-high-resolution-population-density-maps-demographic-estimates", | 45 | igeria-high-resolution-population-density-maps-demographic-estimates", | ||
46 | "notes": "VERSION 1.5. The world's most accurate population | 46 | "notes": "VERSION 1.5. The world's most accurate population | ||
47 | datasets. Seven maps/datasets for the distribution of various | 47 | datasets. Seven maps/datasets for the distribution of various | ||
48 | populations in Nigeria: (1) Overall population density (2) Women (3) | 48 | populations in Nigeria: (1) Overall population density (2) Women (3) | ||
49 | Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages | 49 | Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages | ||
50 | 60+) (7) Women of reproductive age (ages 15-49).\r\n\r\n### | 50 | 60+) (7) Women of reproductive age (ages 15-49).\r\n\r\n### | ||
51 | Methodology\r\n\r\nThese high-resolution maps are created using | 51 | Methodology\r\n\r\nThese high-resolution maps are created using | ||
52 | machine learning techniques to identify buildings from commercially | 52 | machine learning techniques to identify buildings from commercially | ||
53 | available satellite images. This is then overlayed with general | 53 | available satellite images. This is then overlayed with general | ||
54 | population estimates based on publicly available census data and other | 54 | population estimates based on publicly available census data and other | ||
55 | population statistics at Columbia University. The resulting maps are | 55 | population statistics at Columbia University. The resulting maps are | ||
56 | the most detailed and actionable tools available for aid and research | 56 | the most detailed and actionable tools available for aid and research | ||
57 | organizations. For more information about the methodology used to | 57 | organizations. For more information about the methodology used to | ||
58 | create our high resolution population density maps and the demographic | 58 | create our high resolution population density maps and the demographic | ||
59 | distributions, click | 59 | distributions, click | ||
60 | resolution-population-density-maps-demographic-estimates/).\r\n\r\nFor | 60 | resolution-population-density-maps-demographic-estimates/).\r\n\r\nFor | ||
61 | information about how to use HDX to access these datasets, please | 61 | information about how to use HDX to access these datasets, please | ||
62 | visit: | 62 | visit: | ||
63 | n-density-maps-demographic-estimates-documentation/\r\n\r\nAdjustments | 63 | n-density-maps-demographic-estimates-documentation/\r\n\r\nAdjustments | ||
64 | to match the census population with the UN estimates are applied at | 64 | to match the census population with the UN estimates are applied at | ||
65 | the national level. The UN estimate for a given country (or | 65 | the national level. The UN estimate for a given country (or | ||
66 | state/territory) is divided by the total census estimate of population | 66 | state/territory) is divided by the total census estimate of population | ||
67 | for the given country. The resulting adjustment factor is multiplied | 67 | for the given country. The resulting adjustment factor is multiplied | ||
68 | by each administrative unit census value for the target year. This | 68 | by each administrative unit census value for the target year. This | ||
69 | preserves the relative population totals across administrative units | 69 | preserves the relative population totals across administrative units | ||
70 | while matching the UN total. More information can be found | 70 | while matching the UN total. More information can be found | ||
71 | ocs/census-information-for-high-resolution-population-density-maps/)", | 71 | ocs/census-information-for-high-resolution-population-density-maps/)", | ||
n | 72 | "num_resources": 9, | n | 72 | "num_resources": 8, |
73 | "num_tags": 7, | 73 | "num_tags": 7, | ||
74 | "organization": { | 74 | "organization": { | ||
75 | "approval_status": "approved", | 75 | "approval_status": "approved", | ||
76 | "created": "2022-07-04T08:06:45.420882", | 76 | "created": "2022-07-04T08:06:45.420882", | ||
77 | "description": "We work to build inclusion and participatory | 77 | "description": "We work to build inclusion and participatory | ||
78 | democracy in cities and urban spaces through empowering citizens, | 78 | democracy in cities and urban spaces through empowering citizens, | ||
79 | building trust and accountability in civic space, and capacitating | 79 | building trust and accountability in civic space, and capacitating | ||
80 | government. You can find our website | 80 | government. You can find our website | ||
81 | [here](https://opencitieslab.org/).", | 81 | [here](https://opencitieslab.org/).", | ||
82 | "id": "8e526815-d516-4f6c-9ae0-a4d62555c30c", | 82 | "id": "8e526815-d516-4f6c-9ae0-a4d62555c30c", | ||
83 | "image_url": | 83 | "image_url": | ||
84 | ttps://opencitieslab.org/odd/static/dist/img/ocl_logo_header-nav.png", | 84 | ttps://opencitieslab.org/odd/static/dist/img/ocl_logo_header-nav.png", | ||
85 | "is_organization": true, | 85 | "is_organization": true, | ||
86 | "name": "open-cities-lab", | 86 | "name": "open-cities-lab", | ||
87 | "revision_id": "35e0d462-e6b8-4c18-8743-e9361e136009", | 87 | "revision_id": "35e0d462-e6b8-4c18-8743-e9361e136009", | ||
88 | "state": "active", | 88 | "state": "active", | ||
89 | "title": "Open Cities Lab", | 89 | "title": "Open Cities Lab", | ||
90 | "type": "organization" | 90 | "type": "organization" | ||
91 | }, | 91 | }, | ||
92 | "owner_org": "8e526815-d516-4f6c-9ae0-a4d62555c30c", | 92 | "owner_org": "8e526815-d516-4f6c-9ae0-a4d62555c30c", | ||
93 | "private": false, | 93 | "private": false, | ||
94 | "relationships_as_object": [], | 94 | "relationships_as_object": [], | ||
95 | "relationships_as_subject": [], | 95 | "relationships_as_subject": [], | ||
96 | "resources": [ | 96 | "resources": [ | ||
97 | { | 97 | { | ||
98 | "cache_last_updated": null, | 98 | "cache_last_updated": null, | ||
99 | "cache_url": null, | 99 | "cache_url": null, | ||
n | 100 | "created": "2021-06-03T14:14:38.210368", | n | 100 | "created": "2021-06-03T14:15:19.619601", |
101 | "datastore_active": false, | ||||
102 | "description": "", | ||||
103 | "format": "CSV", | ||||
104 | "hash": "", | ||||
105 | "id": "80f34008-994f-4bc1-bf73-b348e3345fa8", | ||||
106 | "last_modified": null, | ||||
107 | "mimetype": null, | ||||
108 | "mimetype_inner": null, | ||||
109 | "name": "nga_women_2020_csv.zip", | ||||
110 | "package_id": "fe17bb29-52c2-4029-af8e-58e4f362f956", | ||||
111 | "position": 0, | ||||
112 | "resource_type": null, | ||||
113 | "revision_id": "1988e61e-992d-4308-926e-030d6bf8e431", | ||||
114 | "size": null, | ||||
115 | "state": "active", | ||||
116 | "url": | ||||
117 | 5c5a2da6-3f3f-4376-8cfc-15dc49e7be28/download/nga_women_2020_csv.zip", | ||||
118 | "url_type": null | ||||
119 | }, | ||||
120 | { | ||||
121 | "cache_last_updated": null, | ||||
122 | "cache_url": null, | ||||
123 | "created": "2021-06-03T14:16:00.574881", | ||||
101 | "datastore_active": false, | 124 | "datastore_active": false, | ||
102 | "description": "", | 125 | "description": "", | ||
103 | "format": "geotiff", | 126 | "format": "geotiff", | ||
104 | "hash": "", | 127 | "hash": "", | ||
n | 105 | "id": "63ac55ae-ebf0-4dc9-a711-70dbf4b8ae25", | n | 128 | "id": "f809e8de-ef0e-4c24-9f80-298f364f567c", |
106 | "last_modified": null, | 129 | "last_modified": null, | ||
n | 107 | "mimetype": null, | n | ||
108 | "mimetype_inner": null, | 130 | "mimetype": null, | ||
131 | "mimetype_inner": null, | ||||
109 | "name": "nga_men_2020_geotiff.zip", | 132 | "name": "nga_women_2020_geotiff.zip", | ||
110 | "package_id": "fe17bb29-52c2-4029-af8e-58e4f362f956", | 133 | "package_id": "fe17bb29-52c2-4029-af8e-58e4f362f956", | ||
n | 111 | "position": 0, | n | 134 | "position": 1, |
112 | "resource_type": null, | ||||
113 | "revision_id": "1397bab0-c6b6-4c98-85af-340c53b7e5aa", | ||||
114 | "size": null, | ||||
115 | "state": "active", | ||||
116 | "url": | ||||
117 | d13bc5-16eb-4885-953a-5e232de1bb0c/download/nga_men_2020_geotiff.zip", | ||||
118 | "url_type": null | 135 | "resource_type": null, | ||
136 | "revision_id": "1988e61e-992d-4308-926e-030d6bf8e431", | ||||
137 | "size": null, | ||||
138 | "state": "active", | ||||
139 | "url": | ||||
140 | 9efc-d921-410b-a0d8-f233f2496247/download/nga_women_2020_geotiff.zip", | ||||
141 | "url_type": null | ||||
119 | }, | 142 | }, | ||
120 | { | 143 | { | ||
n | 121 | "cache_last_updated": null, | n | ||
122 | "cache_url": null, | 144 | "cache_last_updated": null, | ||
145 | "cache_url": null, | ||||
123 | "created": "2021-06-03T14:15:19.619601", | 146 | "created": "2021-06-03T14:16:51.572448", | ||
124 | "datastore_active": false, | 147 | "datastore_active": false, | ||
125 | "description": "", | 148 | "description": "", | ||
126 | "format": "CSV", | 149 | "format": "CSV", | ||
127 | "hash": "", | 150 | "hash": "", | ||
n | 128 | "id": "80f34008-994f-4bc1-bf73-b348e3345fa8", | n | 151 | "id": "33cb5b46-51b8-4518-9579-26f617d4e046", |
129 | "last_modified": null, | 152 | "last_modified": null, | ||
n | 130 | "mimetype": null, | n | ||
131 | "mimetype_inner": null, | 153 | "mimetype": null, | ||
154 | "mimetype_inner": null, | ||||
132 | "name": "nga_women_2020_csv.zip", | 155 | "name": "nga_women_of_reproductive_age_15_49_2020_csv.zip", | ||
133 | "package_id": "fe17bb29-52c2-4029-af8e-58e4f362f956", | 156 | "package_id": "fe17bb29-52c2-4029-af8e-58e4f362f956", | ||
n | 134 | "position": 1, | n | 157 | "position": 2, |
135 | "resource_type": null, | ||||
136 | "revision_id": "1397bab0-c6b6-4c98-85af-340c53b7e5aa", | ||||
137 | "size": null, | ||||
138 | "state": "active", | ||||
139 | "url": | ||||
140 | 5c5a2da6-3f3f-4376-8cfc-15dc49e7be28/download/nga_women_2020_csv.zip", | ||||
141 | "url_type": null | 158 | "resource_type": null, | ||
159 | "revision_id": "1988e61e-992d-4308-926e-030d6bf8e431", | ||||
160 | "size": null, | ||||
161 | "state": "active", | ||||
162 | "url": | ||||
163 | 32e6f74f2e/download/nga_women_of_reproductive_age_15_49_2020_csv.zip", | ||||
164 | "url_type": null | ||||
142 | }, | 165 | }, | ||
143 | { | 166 | { | ||
n | 144 | "cache_last_updated": null, | n | ||
145 | "cache_url": null, | 167 | "cache_last_updated": null, | ||
168 | "cache_url": null, | ||||
146 | "created": "2021-06-03T14:16:00.574881", | 169 | "created": "2021-06-03T14:17:31.956887", | ||
147 | "datastore_active": false, | 170 | "datastore_active": false, | ||
148 | "description": "", | 171 | "description": "", | ||
149 | "format": "geotiff", | 172 | "format": "geotiff", | ||
150 | "hash": "", | 173 | "hash": "", | ||
n | 151 | "id": "f809e8de-ef0e-4c24-9f80-298f364f567c", | n | 174 | "id": "d8efb8fc-a654-4382-bcee-1e2792410d9f", |
152 | "last_modified": null, | 175 | "last_modified": null, | ||
n | 153 | "mimetype": null, | n | ||
154 | "mimetype_inner": null, | 176 | "mimetype": null, | ||
177 | "mimetype_inner": null, | ||||
155 | "name": "nga_women_2020_geotiff.zip", | 178 | "name": "nga_women_of_reproductive_age_15_49_2020_geotiff.zip", | ||
156 | "package_id": "fe17bb29-52c2-4029-af8e-58e4f362f956", | 179 | "package_id": "fe17bb29-52c2-4029-af8e-58e4f362f956", | ||
n | 157 | "position": 2, | n | 180 | "position": 3, |
158 | "resource_type": null, | ||||
159 | "revision_id": "1397bab0-c6b6-4c98-85af-340c53b7e5aa", | ||||
160 | "size": null, | ||||
161 | "state": "active", | ||||
162 | "url": | ||||
163 | 9efc-d921-410b-a0d8-f233f2496247/download/nga_women_2020_geotiff.zip", | ||||
164 | "url_type": null | 181 | "resource_type": null, | ||
182 | "revision_id": "1988e61e-992d-4308-926e-030d6bf8e431", | ||||
183 | "size": null, | ||||
184 | "state": "active", | ||||
185 | "url": | ||||
186 | bffde6/download/nga_women_of_reproductive_age_15_49_2020_geotiff.zip", | ||||
187 | "url_type": null | ||||
165 | }, | 188 | }, | ||
166 | { | 189 | { | ||
n | 167 | "cache_last_updated": null, | n | ||
168 | "cache_url": null, | 190 | "cache_last_updated": null, | ||
191 | "cache_url": null, | ||||
169 | "created": "2021-06-03T14:16:51.572448", | 192 | "created": "2021-06-03T14:18:29.334881", | ||
170 | "datastore_active": false, | 193 | "datastore_active": false, | ||
171 | "description": "", | 194 | "description": "", | ||
172 | "format": "CSV", | 195 | "format": "CSV", | ||
173 | "hash": "", | 196 | "hash": "", | ||
n | 174 | "id": "33cb5b46-51b8-4518-9579-26f617d4e046", | n | 197 | "id": "caf9e5b9-4c2c-49d6-8d0e-42587fe56e3d", |
175 | "last_modified": null, | 198 | "last_modified": null, | ||
n | 176 | "mimetype": null, | n | ||
177 | "mimetype_inner": null, | 199 | "mimetype": null, | ||
200 | "mimetype_inner": null, | ||||
178 | "name": "nga_women_of_reproductive_age_15_49_2020_csv.zip", | 201 | "name": "nga_youth_15_24_2020_csv.zip", | ||
179 | "package_id": "fe17bb29-52c2-4029-af8e-58e4f362f956", | 202 | "package_id": "fe17bb29-52c2-4029-af8e-58e4f362f956", | ||
n | 180 | "position": 3, | n | 203 | "position": 4, |
181 | "resource_type": null, | ||||
182 | "revision_id": "1397bab0-c6b6-4c98-85af-340c53b7e5aa", | ||||
183 | "size": null, | ||||
184 | "state": "active", | ||||
185 | "url": | ||||
186 | 32e6f74f2e/download/nga_women_of_reproductive_age_15_49_2020_csv.zip", | ||||
187 | "url_type": null | 204 | "resource_type": null, | ||
205 | "revision_id": "1988e61e-992d-4308-926e-030d6bf8e431", | ||||
206 | "size": null, | ||||
207 | "state": "active", | ||||
208 | "url": | ||||
209 | 05-752f-4084-bd6f-f12c5cb11f28/download/nga_youth_15_24_2020_csv.zip", | ||||
210 | "url_type": null | ||||
188 | }, | 211 | }, | ||
189 | { | 212 | { | ||
n | 190 | "cache_last_updated": null, | n | ||
191 | "cache_url": null, | 213 | "cache_last_updated": null, | ||
214 | "cache_url": null, | ||||
192 | "created": "2021-06-03T14:17:31.956887", | 215 | "created": "2021-06-03T14:18:55.500867", | ||
193 | "datastore_active": false, | 216 | "datastore_active": false, | ||
194 | "description": "", | 217 | "description": "", | ||
195 | "format": "geotiff", | 218 | "format": "geotiff", | ||
196 | "hash": "", | 219 | "hash": "", | ||
n | 197 | "id": "d8efb8fc-a654-4382-bcee-1e2792410d9f", | n | 220 | "id": "3f1797d9-3a00-43ba-adbd-ef606244c7e3", |
198 | "last_modified": null, | 221 | "last_modified": null, | ||
n | 199 | "mimetype": null, | n | ||
200 | "mimetype_inner": null, | 222 | "mimetype": null, | ||
201 | "name": "nga_women_of_reproductive_age_15_49_2020_geotiff.zip", | ||||
202 | "package_id": "fe17bb29-52c2-4029-af8e-58e4f362f956", | ||||
203 | "position": 4, | ||||
204 | "resource_type": null, | ||||
205 | "revision_id": "1397bab0-c6b6-4c98-85af-340c53b7e5aa", | ||||
206 | "size": null, | ||||
207 | "state": "active", | ||||
208 | "url": | ||||
209 | bffde6/download/nga_women_of_reproductive_age_15_49_2020_geotiff.zip", | ||||
210 | "url_type": null | ||||
211 | }, | ||||
212 | { | ||||
213 | "cache_last_updated": null, | ||||
214 | "cache_url": null, | ||||
215 | "created": "2021-06-03T14:18:29.334881", | ||||
216 | "datastore_active": false, | ||||
217 | "description": "", | ||||
218 | "format": "CSV", | ||||
219 | "hash": "", | ||||
220 | "id": "caf9e5b9-4c2c-49d6-8d0e-42587fe56e3d", | ||||
221 | "last_modified": null, | ||||
222 | "mimetype": null, | 223 | "mimetype_inner": null, | ||
223 | "mimetype_inner": null, | ||||
224 | "name": "nga_youth_15_24_2020_csv.zip", | 224 | "name": "nga_youth_15_24_2020_geotiff.zip", | ||
225 | "package_id": "fe17bb29-52c2-4029-af8e-58e4f362f956", | 225 | "package_id": "fe17bb29-52c2-4029-af8e-58e4f362f956", | ||
226 | "position": 5, | 226 | "position": 5, | ||
227 | "resource_type": null, | 227 | "resource_type": null, | ||
n | 228 | "revision_id": "1397bab0-c6b6-4c98-85af-340c53b7e5aa", | n | 228 | "revision_id": "1988e61e-992d-4308-926e-030d6bf8e431", |
229 | "size": null, | 229 | "size": null, | ||
230 | "state": "active", | 230 | "state": "active", | ||
231 | "url": | 231 | "url": | ||
n | 232 | 05-752f-4084-bd6f-f12c5cb11f28/download/nga_youth_15_24_2020_csv.zip", | n | 232 | 8a6-47d0-8d5e-398f71da3f3e/download/nga_youth_15_24_2020_geotiff.zip", |
233 | "url_type": null | 233 | "url_type": null | ||
234 | }, | 234 | }, | ||
235 | { | 235 | { | ||
n | 236 | "cache_last_updated": null, | n | ||
237 | "cache_url": null, | 236 | "cache_last_updated": null, | ||
237 | "cache_url": null, | ||||
238 | "created": "2021-06-03T14:18:55.500867", | 238 | "created": "2021-06-03T14:19:30.337227", | ||
239 | "datastore_active": false, | 239 | "datastore_active": false, | ||
240 | "description": "", | 240 | "description": "", | ||
n | 241 | "format": "geotiff", | n | 241 | "format": "JSON", |
242 | "hash": "", | 242 | "hash": "", | ||
n | 243 | "id": "3f1797d9-3a00-43ba-adbd-ef606244c7e3", | n | 243 | "id": "df3f32c0-c45e-43fe-ae9d-745d93e2cc58", |
244 | "last_modified": null, | 244 | "last_modified": null, | ||
n | 245 | "mimetype": null, | n | ||
246 | "mimetype_inner": null, | 245 | "mimetype": null, | ||
247 | "name": "nga_youth_15_24_2020_geotiff.zip", | 246 | "mimetype_inner": null, | ||
247 | "name": "nga_dg_metadata.json.zip", | ||||
248 | "package_id": "fe17bb29-52c2-4029-af8e-58e4f362f956", | 248 | "package_id": "fe17bb29-52c2-4029-af8e-58e4f362f956", | ||
249 | "position": 6, | 249 | "position": 6, | ||
250 | "resource_type": null, | 250 | "resource_type": null, | ||
n | 251 | "revision_id": "1397bab0-c6b6-4c98-85af-340c53b7e5aa", | n | 251 | "revision_id": "1988e61e-992d-4308-926e-030d6bf8e431", |
252 | "size": null, | ||||
253 | "state": "active", | ||||
254 | "url": | ||||
255 | 8a6-47d0-8d5e-398f71da3f3e/download/nga_youth_15_24_2020_geotiff.zip", | ||||
256 | "url_type": null | ||||
257 | }, | ||||
258 | { | ||||
259 | "cache_last_updated": null, | ||||
260 | "cache_url": null, | ||||
261 | "created": "2021-06-03T14:19:30.337227", | ||||
262 | "datastore_active": false, | ||||
263 | "description": "", | ||||
264 | "format": "JSON", | ||||
265 | "hash": "", | ||||
266 | "id": "df3f32c0-c45e-43fe-ae9d-745d93e2cc58", | ||||
267 | "last_modified": null, | ||||
268 | "mimetype": null, | ||||
269 | "mimetype_inner": null, | ||||
270 | "name": "nga_dg_metadata.json.zip", | ||||
271 | "package_id": "fe17bb29-52c2-4029-af8e-58e4f362f956", | ||||
272 | "position": 7, | ||||
273 | "resource_type": null, | ||||
274 | "revision_id": "1397bab0-c6b6-4c98-85af-340c53b7e5aa", | ||||
275 | "size": null, | 252 | "size": null, | ||
276 | "state": "active", | 253 | "state": "active", | ||
277 | "url": | 254 | "url": | ||
278 | c58181-7b90-46e3-b886-03dc47edcabb/download/nga_dg_metadata.json.zip", | 255 | c58181-7b90-46e3-b886-03dc47edcabb/download/nga_dg_metadata.json.zip", | ||
279 | "url_type": null | 256 | "url_type": null | ||
280 | }, | 257 | }, | ||
281 | { | 258 | { | ||
282 | "cache_last_updated": null, | 259 | "cache_last_updated": null, | ||
283 | "cache_url": null, | 260 | "cache_url": null, | ||
284 | "created": "2022-06-15T11:27:21.141541", | 261 | "created": "2022-06-15T11:27:21.141541", | ||
285 | "datastore_active": false, | 262 | "datastore_active": false, | ||
286 | "description": "VERSION 1.5. The world's most accurate | 263 | "description": "VERSION 1.5. The world's most accurate | ||
287 | population datasets. Seven maps/datasets for the distribution of | 264 | population datasets. Seven maps/datasets for the distribution of | ||
288 | various populations in Nigeria: (1) Overall population density (2) | 265 | various populations in Nigeria: (1) Overall population density (2) | ||
289 | Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) | 266 | Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) | ||
290 | Elderly (ages 60+) (7) Women of reproductive age (ages 15-49).", | 267 | Elderly (ages 60+) (7) Women of reproductive age (ages 15-49).", | ||
291 | "format": "", | 268 | "format": "", | ||
292 | "hash": "", | 269 | "hash": "", | ||
293 | "id": "d7c4dbb3-379f-45e8-8758-1ef1f81182c1", | 270 | "id": "d7c4dbb3-379f-45e8-8758-1ef1f81182c1", | ||
294 | "last_modified": null, | 271 | "last_modified": null, | ||
295 | "mimetype": null, | 272 | "mimetype": null, | ||
296 | "mimetype_inner": null, | 273 | "mimetype_inner": null, | ||
297 | "name": "Nigeria: high resolution population density maps", | 274 | "name": "Nigeria: high resolution population density maps", | ||
298 | "package_id": "fe17bb29-52c2-4029-af8e-58e4f362f956", | 275 | "package_id": "fe17bb29-52c2-4029-af8e-58e4f362f956", | ||
n | 299 | "position": 8, | n | 276 | "position": 7, |
300 | "resource_type": null, | 277 | "resource_type": null, | ||
t | 301 | "revision_id": "1397bab0-c6b6-4c98-85af-340c53b7e5aa", | t | 278 | "revision_id": "1988e61e-992d-4308-926e-030d6bf8e431", |
302 | "size": null, | 279 | "size": null, | ||
303 | "state": "active", | 280 | "state": "active", | ||
304 | "url": | 281 | "url": | ||
305 | s://data.humdata.org/dataset/highresolutionpopulationdensitymaps-nga", | 282 | s://data.humdata.org/dataset/highresolutionpopulationdensitymaps-nga", | ||
306 | "url_type": null | 283 | "url_type": null | ||
307 | } | 284 | } | ||
308 | ], | 285 | ], | ||
309 | "revision_id": "9ca6a473-db23-4bf3-ad1d-cad6389f81e7", | 286 | "revision_id": "9ca6a473-db23-4bf3-ad1d-cad6389f81e7", | ||
310 | "state": "active", | 287 | "state": "active", | ||
311 | "tags": [ | 288 | "tags": [ | ||
312 | { | 289 | { | ||
313 | "display_name": "children", | 290 | "display_name": "children", | ||
314 | "id": "a31aa94e-cdbe-470b-b953-602bfc01eeab", | 291 | "id": "a31aa94e-cdbe-470b-b953-602bfc01eeab", | ||
315 | "name": "children", | 292 | "name": "children", | ||
316 | "state": "active", | 293 | "state": "active", | ||
317 | "vocabulary_id": null | 294 | "vocabulary_id": null | ||
318 | }, | 295 | }, | ||
319 | { | 296 | { | ||
320 | "display_name": "gender", | 297 | "display_name": "gender", | ||
321 | "id": "9923e71e-0c99-4abb-a0fa-5e7ccbc74956", | 298 | "id": "9923e71e-0c99-4abb-a0fa-5e7ccbc74956", | ||
322 | "name": "gender", | 299 | "name": "gender", | ||
323 | "state": "active", | 300 | "state": "active", | ||
324 | "vocabulary_id": null | 301 | "vocabulary_id": null | ||
325 | }, | 302 | }, | ||
326 | { | 303 | { | ||
327 | "display_name": "nigeria", | 304 | "display_name": "nigeria", | ||
328 | "id": "86671c58-04e8-4323-8904-b2b506740271", | 305 | "id": "86671c58-04e8-4323-8904-b2b506740271", | ||
329 | "name": "nigeria", | 306 | "name": "nigeria", | ||
330 | "state": "active", | 307 | "state": "active", | ||
331 | "vocabulary_id": null | 308 | "vocabulary_id": null | ||
332 | }, | 309 | }, | ||
333 | { | 310 | { | ||
334 | "display_name": "population", | 311 | "display_name": "population", | ||
335 | "id": "0020415a-6815-440e-96c9-b4e4a7b58464", | 312 | "id": "0020415a-6815-440e-96c9-b4e4a7b58464", | ||
336 | "name": "population", | 313 | "name": "population", | ||
337 | "state": "active", | 314 | "state": "active", | ||
338 | "vocabulary_id": null | 315 | "vocabulary_id": null | ||
339 | }, | 316 | }, | ||
340 | { | 317 | { | ||
341 | "display_name": "population density", | 318 | "display_name": "population density", | ||
342 | "id": "98311ff5-1cea-4f34-92fb-c0757c6ce5ca", | 319 | "id": "98311ff5-1cea-4f34-92fb-c0757c6ce5ca", | ||
343 | "name": "population density", | 320 | "name": "population density", | ||
344 | "state": "active", | 321 | "state": "active", | ||
345 | "vocabulary_id": null | 322 | "vocabulary_id": null | ||
346 | }, | 323 | }, | ||
347 | { | 324 | { | ||
348 | "display_name": "women", | 325 | "display_name": "women", | ||
349 | "id": "d8f22a99-abe8-41cb-ae9c-4b543eee7cdf", | 326 | "id": "d8f22a99-abe8-41cb-ae9c-4b543eee7cdf", | ||
350 | "name": "women", | 327 | "name": "women", | ||
351 | "state": "active", | 328 | "state": "active", | ||
352 | "vocabulary_id": null | 329 | "vocabulary_id": null | ||
353 | }, | 330 | }, | ||
354 | { | 331 | { | ||
355 | "display_name": "youth", | 332 | "display_name": "youth", | ||
356 | "id": "98ff881a-a277-4d3a-9641-7657ad12e6a7", | 333 | "id": "98ff881a-a277-4d3a-9641-7657ad12e6a7", | ||
357 | "name": "youth", | 334 | "name": "youth", | ||
358 | "state": "active", | 335 | "state": "active", | ||
359 | "vocabulary_id": null | 336 | "vocabulary_id": null | ||
360 | } | 337 | } | ||
361 | ], | 338 | ], | ||
362 | "title": "Nigeria: High Resolution Population Density Maps + | 339 | "title": "Nigeria: High Resolution Population Density Maps + | ||
363 | Demographic Estimates", | 340 | Demographic Estimates", | ||
364 | "type": "dataset", | 341 | "type": "dataset", | ||
365 | "url": | 342 | "url": | ||
366 | s://data.humdata.org/dataset/highresolutionpopulationdensitymaps-nga", | 343 | s://data.humdata.org/dataset/highresolutionpopulationdensitymaps-nga", | ||
367 | "version": "" | 344 | "version": "" | ||
368 | } | 345 | } |